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Can DeepFake voices steal high-profile identities?
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RQ: Can we apply an LR framework to detect “in-the-
wild” DeepFakes of high-profile identities?

Spoof detector &

® DeepFakes are becoming more
convincing every day

e The recent case of a Zelenskyy
DeepFake highlights possible
malicious use of this technology

e There is a growing need for tools

\ to reliably detect malicious use

of DeepFakes, aka spoofing

e 30 audio DeepFakes of high-profile
celebrities collected from online sources
e The DeepFakes were likely created using a
Tacotron-2 model, which can synthesise

high-quality speech using 3 hours of
training data

e For each of the 30 DeepFakes, a
corresponding genuine recording was also
sourced

Ask to listen
some samples!
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e A Genuine recording of Zelenskyy produces and LR>1 and the Zelenslky
DeepFalke produces an LR<1

e RQ: The LRs provide correct support in both DeepFake and genuine cases,
demonstrating that this approach can be successfully applied to “in-the-wild”
audio
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Post-hoc noise analysis References &

100 XX ® VAD spoof p=0.05 p=0.793
® VAD bonafide p=0.021 p=0.911
»  NO VAD spoof p=-0.336 p=0.07

e % NO VAD bonafide p=0.031 p=0.872
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reverb influences the detection scores
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e The effect of noise is investigated using a correlation analysis between the
WADA SNR % and the detection scores; no strong correlations are observed
e The detector is therefore robust to noise, but qualitative analysis indicates that

e VAD does not improve the equal error rate (EER), consistent with [4, 5]
e Silence is important in spoof detection [5] but leads to less noise-robust

e Future experiments should focus on reverb and data augmentation
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