
5. Current results

Number of voice twin candidates per 

database for different distance values 

(EPS):

6. Next: Listener experiment

Ask to listen to 

some samples!

Three blocks (one per dataset)

Same/different judgements, 1-5 confidence scale

Sample duration: 3-5s

Comparisons to include: 

Voice twins

Same-speaker pairs

Random different-speaker pairs

Two files per speaker, three samples per recording

Listeners will judge subsets of the total number of 

comparisons

7. Hypotheses assessed

1. The automatic method produces voice twin

pairs that can be used in listener experiments.

2. Listeners will perform worse when

discriminating between speech from voice

twins than from random speakers (higher

number of false acceptances).

3. Listeners’ confidence in their judgements will

vary according to the type of comparison in

line with [10].
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EPS WYRED GBRENG VoxCeleb

0.2 1 3 ♀, 1 ♂ 1 ♀, 0 ♂
0.25 4 4 ♀, 6 ♂ 1 ♀, 1 ♂
0.3 4 2 ♀, 8 ♂ 0 ♀, 2 ♂

1. Motivation 2. Proposed methodology

What are voice twins?

Located at the extreme end of perceived voice similarity, voice twins may be

different, unrelated speakers that sound extremely similar to one another.

Acoustic features contributing to speaker similarity include F0, LTF1 to LTF4 [1].

Why should we care?

Voice twins could help in gaining further insights into

human perception of speaker individuality.

Research questions:

1. Is it possible to find different, unrelated

speakers that sound extremely similar to

one another, i.e. voice twins,

automatically?

2. Can human listeners successfully

differentiate between speech from “voice

twins”, from the same speakers, and from

random speaker pairs?

3. How confident are listeners in their

judgements?

Finding speakers that sound extremely similar:

1. Select perceptually relevant features

2. Model features automatically

3. Calculate similarity estimates for speaker pairs

4. Use these similarity estimates to find subgroups

of similar-sounding speakers

5. Explore clustering techniques to find these

subgroups of potentially indistinguishable

speakers

6. Assess how difficult it is to differentiate between

speakers in the subgroups identified using human

listeners

3. Speaker databases

Subsets from three speaker databases: small and

controlled to large and diverse

Selection of good quality recordings:

Net speech > 20 s

SNR > 18 dB

Clipping < 50 %

Selection of two random files per speaker to model

intra- and interspeaker variability

WYRED [2]:

Homogeneous database

180 male speakers of similar age

English language, similar accents

Task 2 (accomplice telephone call)

Task 4 (answerphone message)

Studio quality recordings

VoxCeleb [4]:

Highly diverse database

906 speakers (metadata not available)

Mostly English language, various accents

Interview recordings from YouTube

GBR-ENG [3]:

390 speakers (202 female)

English language, various accents

Landline recordings made in GB

4. Experiment

Automatic speaker recognition

Extraction of perceptually relevant phonetic features LTF1 to LTF4 using x-vectors [5]

Creation of voice models and calculation of similarity scores using VOCALISE automatic speaker recognition software [6]

Agglomerative hierarchical clustering (AHC)

groups recordings hierarchically according to

pairwise distances (similarity) [7].

Advantage:

All recordings will form part of a cluster

Disadvantages:

Clusters are determined visually in

dendrogram

Maximum number of clusters needed as input

Pilot experiment using a GBRENG subset [8]:

180 unique speaker recordings (90 female)

Clusters according to speaker sex

Difficult to assess cluster similarity further

DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) groups recordings within dense areas as defined by a

minimum number of neighbouring points within the radius EPS [9].

Advantages:

Recordings that are not close to others are penalised (= noise)

Varying the distance measure EPS may result in voice pairs of

different degrees of similarity

Disadvantage:

Not all recordings may form part of a cluster

In this experiment:

Male and female speakers processed together

Voice twin candidates = clusters containing both recordings of

two different speakers

N

N

NC

NC

C

NC

N

C

decrease in EPS

Min. 3 neighbours within EPS

Noise

Cluster core point (C)

Cluster non-core

point (NC)

Radius EPS

LegendTwo branches merging 

early = voice twins?


